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Abstract

Building on the informational interpretation of reality and the emergence of structure from
entropy (Papers II-1V), we propose that the quantum wave function is not a primary physical
entity but a universal compression algorithm. In this framework, the deterministic evolution of
encodes the most probable, compressed representation of all underlying information. We present
a computational simulation in a linear quantum system, demonstrating that coefficient dynamics
derived from compression-optimal bases reproduce near-unitary evolution and approximately
Hermitian generators. These results suggest that the formal structure of quantum mechanics
arises naturally from information-theoretic optimization, supporting a view in which physics
is the study of efficiently encoded informational outputs rather than fundamental ontological
processes.

1 Theoretical Framework

Our theory rests on three fundamental assumptions:

Assumption 1: The Universe is fundamentally abstract and informational.

The cosmos is fundamentally informational, characterized by “white noise,” representing the myr-
iad of virtual particles and ephemeral fluctuations at the quantum foam level—short-lived, small,
random informational structures. However, interspersed within this randomness are sections that
encode profound symmetries.

Assumption 2: Maximally Compressed States

In any set of information, the number of highly compressed sequences (those with low Kolmogorov
complexity) will statistically dominate over purely random, incompressible sequences in terms of
persistence and structure. Maximum compression implies maximum probability. Predictable infor-
mation compresses well, which explains why we find ourselves in a universe that is the most probable
one, governed by predictable laws of physics.



Assumption 3: The Wave Function as the Compression Algorithm

The wave function ¢ is the universal compression algorithm of the cosmos. The deterministic
evolution described by quantum mechanics, which governs the behavior of microstructures, is the
direct consequence of this algorithm’s operation.

2 Computational Simulation

To explore the “wave function-as-compression-coefficients” idea, we designed a simulation to test its
predictions in a linear regime.

2.1 Simulation Setup

We consider a 1D lattice with N = 64 sites. We simulate the time evolution of a single-particle tight-
binding model, which is a standard representation of a particle hopping between nearest-neighbor
sites. This model is governed by a nearest-neighbor hopping Hamiltonian, resulting in complex
wave functions v (t) over T' = 200 timesteps.

The simulated time evolution adheres to the Schrédinger equation:

0
’Lhai/)(fﬁ, t) = Hy(z,1)
where H is the tight-binding Hamiltonian. For simplicity, we set h = 1.

From the complex wave function v at each timestep t, we generate “observed frames” in two variants:

1. Real part: z; = Re(v)

2. Intensity (probability density): z; = [1|?

2.2 Data Processing and Analysis

1. Principal Component Analysis (PCA): We applied PCA to the dataset of frames {z}7_;.
PCA finds an orthogonal basis that best captures the variance in the data. We projected the
data onto the top 8 principal components, yielding coefficient vectors {c;} where ¢; € R®.

2. Linear Propagator Fitting: Assuming the compression process generates deterministic
evolution in the coefficient space, we fit a linear propagator matrix G between successive
vectors using least squares:

ci+1 =~ Gy

3. Unitarity and Hermiticity Test: We test if the propagator G is approximately unitary
(G'G ~ I) and if the generator Hye, = —ilog G is approximately Hermitian (ngn ~ Hyen).



2.3 Results and Plots

The simulation produced the following key visualizations:
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Figure 1: PCA components (real part) 1 through 4.

Singular values of fitted propagator G (real PCA)  Rpaconstruction MSE vs # PCA components (real frames)

0.0030
1.1x10°
[
2 0.0025
o
® 1,05 x 10°
g 0.0020
[
3 100f @ 0.0015
© =
>
k] . 0.0010
% 9.5x 10
@ 0.0005
9 x 10_1 L 1 1 L L L L 1 00000 L 1 L L 1 L 1
1 2 3 4 5 6 7 8 0 5 10 15 20 25 30
index components

Figure 2: Left: Singular values of fitted propagator G. Right: Reconstruction MSE vs number of
PCA components.

2.4 Positive Support

The simulation yielded significant positive support for the hypothesis. In a clean, linear-unitary
toy model, a compression-optimal linear basis produces coefficient dynamics that are demonstrably
near-unitary and possess a near-Hermitian generator. This behavior precisely matches the
predictions of our informational theory.



3 Discussion and Caveats

While the simulation provides compelling initial support, we acknowledge several limitations:

e Linearity Assumption: PCA is a linear transform. If the relationship between bitstrings
and amplitudes is nonlinear.

e Decoherence: The model neglects the effects of open quantum systems.

4 Conclusion

We propose that reality can be viewed as a geometric interpretation of information, with the wave
function acting as a universal compression algorithm. Finiteness observed in physics is not merely
a boundary condition, but statistical phenomenon. The universe does not deal in infinities because
infinities cannot be efficiently stored or propagated by a maximally compressing system and are
hence unprobable.

Simulation Software

e 'wavefunction-as-compression.py: Wavefunction as compression

Glossary of the Abstract Universe

SSP Spectral Selection Principle (SSP): The foundational principle asserting that reality is the
subset of informational paths that admit the most efficient representation in the frequency
domain. It replaces "laws of physics" with a statistical preference for compressibility.

Tons Observer Filter

L (Spectral Encoding Length) The measure of information required to represent a state or path
~. In this framework, £ replaces the classical concept of Action. Minimizing L is equivalent
to the Principle of Least Action.

Tobs (Observer Filter) The subset of all possible configuration sequences capable of describing a
subjective experience.

MSM (Microstructure Motif) Recurring, compressible bit-patterns within configuration space
(e.g., particles, fields). The density of these motifs determines the local spectral cost, mani-
festing as mass-energy.

Nyquist Horizon The "Planck Scale" of the theory. It is the maximum frequency supportable
by the discretization of configuration space. Any structure below this limit is mathematically
"aliased" and cannot be rendered.


simulations/wavefunction-as-compression.py

Induced Time The sequential ordering of states along a path . An emergent property of the
observer’s trajectory.

Phase-Coherence The informational alignment between disparate parts of the spectral encoding.
This provides the mathematical basis for what is traditionally called quantum entanglement.

solipsism The philosophical position that only one’s own mind is certain to exist.
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