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1 Motivation

We show that the dominance of compressed observer descriptions follows from a purely combinatorial

argument.

1.1 Setup

Let the total information budget of the universe be �xed at N bits. Consider an observer O whose

identity can be fully speci�ed by a minimal description of k bits, with k ≤ N . The remaining N −k
bits correspond to degrees of freedom that do not a�ect the observer's identity.

We assume a uniform measure over the space of all 2N possible bitstrings of length N .

1.2 Counting Observer Realizations

An observer O is realized whenever its k de�ning bits are embedded into an N -bit string, regardless

of the values of the remaining N −k bits. The total number of distinct realizations of O is therefore

Ω(O | N, k) =

(
N

k

)
2N−k, (1)

where:

�

(
N
k

)
counts the number of ways to choose the locations of the k de�ning bits,

� 2N−k counts the number of possible assignments of the remaining unconstrained bits.

1.3 Probability Measure

Given the uniform measure over all 2N bitstrings, the probability that a randomly selected N -bit

con�guration instantiates observer O is
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P (O | N, k) =
Ω(O | N, k)

2N
=

(
N

k

)
2−k. (2)

This expression is exact and involves no uncomputable quantities.

1.4 Compression Implies Maximal Probability

For �xed N , consider two observers O1 and O2 with minimal description lengths k1 < k2. The ratio
of their probabilities is

P (O1)

P (O2)
=

(
N
k1

)
2−k1(

N
k2

)
2−k2

. (3)

In the regime k ≪ N , we may use the approximation

(
N

k

)
≈ Nk

k!
, (4)

yielding

P (O | N, k) ≈ Nk

k!
2−k. (5)

This probability decreases rapidly with increasing k. Consequently, observers admitting shorter

descriptions occupy an exponentially larger fraction of the con�guration space.

1.5 Interpretation

This result establishes that compression implies maximal probability as a direct consequence of

combinatorics. No appeal is made to Kolmogorov complexity, Solomono� induction, or heuristic

notions of simplicity. The minimal description length k may be continuous and physically de�ned

(e.g., via spectral support of a wavefunction) and only mapped to discrete bits after coarse-graining.

In the IaM e framework, k corresponds to the Minimal Spectral Length required to encode the

observer. The wavefunction provides the analytic representation achieving this minimal description,

and probabilistic weighting arises from the number of compatible microscopic realizations.

1.6 Conclusion

For a �xed information budget, observer con�gurations with minimal description length dominate

the measure by necessity. The emergence of compressed, wave-like physical laws therefore follows
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Figure 1: Scatter Plot (MSL vs. Observer Probability): Observer probability as a function of

minimal spectral length (MSL) for 5,000 random bitstrings. Lower MSL corresponds to more

compressible con�gurations, which are exponentially more probable.

Figure 2: Smoothed Trend (Binned Average Probability): Smoothed trend of observer probability

across MSL bins, showing the inverse relationship between spectral complexity and combinatorial

likelihood.

from exact counting, not heuristic principles or uncomputable complexity measures.
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Figure 3: Histogram of Probabilities: Distribution of observer probabilities P(O) across all sampled

bitstrings, illustrating that highly compressible (low MSL) con�gurations dominate the probability

landscape.

1.7 Proof of Concept

� observer_probability.py: Python program serving as proof-of-concept
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