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1 Motivation

We show that the dominance of compressed observer descriptions follows from a purely combinatorial
argument.

1.1 Setup

Let the total information budget of the universe be fixed at N bits. Consider an observer O whose
identity can be fully specified by a minimal description of &k bits, with £ < N. The remaining N —k
bits correspond to degrees of freedom that do not affect the observer’s identity.

We assume a uniform measure over the space of all 2V possible bitstrings of length N.
1.2 Counting Observer Realizations

An observer O is realized whenever its k defining bits are embedded into an N-bit string, regardless
of the values of the remaining N — k bits. The total number of distinct realizations of O is therefore
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where:

. (JZ ) counts the number of ways to choose the locations of the k defining bits,

e 2N=F counts the number of possible assignments of the remaining unconstrained bits.

1.3 Probability Measure

Given the uniform measure over all 2V bitstrings, the probability that a randomly selected N-bit
configuration instantiates observer O is
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This expression is exact and involves no uncomputable quantities.

1.4 Compression Implies Maximal Probability

For fixed N, consider two observers O; and Oy with minimal description lengths k1 < ko. The ratio
of their probabilities is
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In the regime k < N, we may use the approximation
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yielding
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This probability decreases rapidly with increasing k. Consequently, observers admitting shorter
descriptions occupy an exponentially larger fraction of the configuration space.

1.5 Interpretation

This result establishes that compression implies maximal probability as a direct consequence of
combinatorics. No appeal is made to Kolmogorov complexity, Solomonoff induction, or heuristic
notions of simplicity. The minimal description length k& may be continuous and physically defined
(e.g., via spectral support of a wavefunction) and only mapped to discrete bits after coarse-graining.

In the TaM® framework, k corresponds to the Minimal Spectral Length required to encode the
observer. The wavefunction provides the analytic representation achieving this minimal description,
and probabilistic weighting arises from the number of compatible microscopic realizations.

1.6 Conclusion

For a fixed information budget, observer configurations with minimal description length dominate
the measure by necessity. The emergence of compressed, wave-like physical laws therefore follows



Compression = Maximal Probability
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Figure 1: Scatter Plot (MSL vs. Observer Probability): Observer probability as a function of
minimal spectral length (MSL) for 5,000 random bitstrings. Lower MSL corresponds to more
compressible configurations, which are exponentially more probable.
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Figure 2: Smoothed Trend (Binned Average Probability): Smoothed trend of observer probability

across MSL bins, showing the inverse relationship between spectral complexity and combinatorial
likelihood.

from exact counting, not heuristic principles or uncomputable complexity measures.



Distribution of Observer Probabilities
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Figure 3: Histogram of Probabilities: Distribution of observer probabilities P(O) across all sampled
bitstrings, illustrating that highly compressible (low MSL) configurations dominate the probability
landscape.

1.7 Proof of Concept

e [observer probability.py: Python program serving as proof-of-concept



simulation/observer_probability.py

	Motivation
	Setup
	Counting Observer Realizations
	Probability Measure
	Compression Implies Maximal Probability
	Interpretation
	Conclusion
	Proof of Concept


