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1 Three Descriptive Paradigms of Information

Building on the ontological equivalence of physical and informational con�gurations established in

Paper I, we identify three irreducible descriptive paradigms of information su�cient for representing

bounded, persistent observers:

1. Discrete (set-theoretic),

2. Analytical (spectral, wavefunction compressed),

3. Geometric.

These paradigms are mutually equivalent, descriptively irreducible, and jointly su�cient to express

all internally meaningful informational structure. Physical theories may privilege one paradigm

for convenience, but no paradigm is fundamental. The consistency between them replaces the role

traditionally assigned to physical laws.

This triadic structure provides a foundation for unifying quantum theory, spacetime geometry, and

information theory within a single informational framework.

Translations between these paradigms preserve informational content but not descriptive primitives.

This establishes their equivalence without ontological hierarchy.

2 Hypothesis

We hypothetize that observers emerge as con�gurations that are simultaneously well-de�ned across

all three paradigms.

1. The analytic (wavefunction) ensures existence with high measure (optimal compression algo-

rithm)

2. The discrete (particles) is the �nite rasteriation of the wavefunction.
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3. The geometric ensures separation, persistence, and identity (the only known mechanism for

implementing an inside�outside invariant).

The three paradigms act as orthogonal functional roles, not alternative encodings of the same role.

3 D − ψ −G Formalism

ψ(In)

D(In) G(In)

Sampling

Geometric

Compression

Cycle-Consistency Conditions

We now formalize the functional consistency of the D�ψ�G cycle. Let ΠD, ΠG, and Πψ denote the

projections from wavefunction to discrete, discrete to geometric, and geometric back to wavefunction

representations, respectively. The cycle is unidirectional:

ψ(In)
ΠD−−→ D(In)

ΠG−−→ G(In)
Πψ−−→ ψ(In)

We require that each vertex is approximately preserved under a full cycle:

Πψ ◦ΠG ◦ΠD
(
ψ(In)

)
≈ ψ(In), (1)

ΠG ◦ΠD ◦Πψ
(
G(In)

)
≈ G(In), (2)

ΠD ◦Πψ ◦ΠG
(
D(In)

)
≈ D(In). (3)

Here, �≈� re�ects the fact that some information is necessarily compressed, discretized, or projected

in each step. This small deviation is not a �aw, but the very source of emergent dynamics:

� The geometric�discrete projection encodes persistence and boundaries; subtle misalignments

create e�ective forces and interactions in G (e.g., gravitation, shape deformation).

� The discrete�wavefunction projection re-compresses the observer and environment; slight dif-

ferences drive the temporal evolution of the wavefunction, producing trajectories in ψ.

� Successive cycles of ψ → D → G → ψ propagate these deviations, giving rise to all observed

dynamics, from particle motion to human behavior, entirely as a consequence of MDL-driven

reconstruction.
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In this view, dynamics emerges from the continuous compression�decompression cycle that preserves

observer-de�ning information while allowing minimal deviations. Observers are thus inherently sta-

ble yet dynamically active, their evolution encoded in the small, structured di�erences accumulated

across successive cycles.

Each vertex of the triangle represents a mutually equivalent projection of the same underlying

informational con�guration space In:

� D(In): discrete representation,

� ψ(In): analytic representation,

� G(In): geometric representation.

Connecting lines are structure-preserving maps connecting the representations. The curved arrows

illustrate invertible, commuting transformations between representations. The diagram formalizes

that no representation is fundamental; all are mutually consistent projections of the same informa-

tional object.

4 Paradigms and Descriptions

4.1 1. Analytic Representation (ψ)

Observer Emergence Principle (Spectral Form): Among the ensemble of all possible wave-

functions Ψ over con�guration space C, the observer-compatible paths γ ∈ Tobs are overwhelmingly

likely to occur in the minimal-length wavefunctions, due to algorithmic (Salomono�) weighting:

Ψ(γ) ∝ 2−L(γ)/2,

where L(γ) is the minimal spectral encoding length of γ. High-entropy, incompressible wavefunctions

exist but carry exponentially negligible measure; thus, the observer emerges almost certainly in the

simplest, smoothest, low-entropy wavefunctions.
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Tobs = {γ ∈ S | Observer(γ) = 1}
(Same observer paths from D; basis for compression)

↓
L(γ) = Minimal spectral encoding length of γ ∈ Tobs

(Wavefunction as compression: smooth, predictable, low-entropy paths favored)

↓
Ψ(γ) = 2−L(γ)/2√∑

γ′∈Tobs
2−L(γ′)

(Normalized wavefunction: encodes all observer-compatible paths)

↓
P (γ) = |Ψ(γ)|2

(Born measure: relative likelihood of path γ)

↓
δ
∫
γ L(state) dλ = 0 =⇒ Geodesics

(Minimal-description principle produces paths identical to classical action extrema)

4.2 2. Discrete Representation (D)

P = Raw informational potential

(In�nite unstructured possibilities; no preferred encoding)

↓
C ∼= {0, 1}≤∞

(Discrete con�guration space; convenient static representation)

↓
S = {(s1, . . . , sT ) | si ∈ C}

(Space of all �nite/semi-in�nite paths through con�guration space)

↓
Tobs = {γ ∈ S | Observer(γ) = 1}

(Observer Filter: selects paths with stable informational recursion)

↓
L(γ) = Minimal spectral encoding length of γ ∈ Tobs

(Compression�geometry duality: favors smooth, predictable, and compressible histories)

↓
Ψ(γ) = 2−L(γ)/2√∑

γ′∈Tobs
2−L(γ′)

(Spectral realization: wavefunction encodes optimal compression of observer paths)

↓
P (γ) = |Ψ(γ)|2

(Born measure: relative probability of experienced histories)

↓
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4.3 3. Geometric Representation G

Tobs ⊂ S
(Observer-compatible paths through con�guration space)

↓

I(γλ)
ΠG−−−→ Mλ ⊂ Rd

(Geometric projection λ)

↓
ρ(s) ∼ Lognormal(µ, σ2)

(Emergent density variations from reusable microstructure)

↓

δ

∫
γ
L(state) dλ = 0 =⇒ Geodesics

(Gravitation as geometric manifestation of compression pressure; GR emerges from observer-consistent paths)δ

∫
γ
Lgeom dλ = 0

(Geodesics as minimal-description trajectories)
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