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1 Motivation

We treat geometry as the means of enforcing a well de�ned inside�outside separation and preventing
uncontrolled information mixing with the environment. Given that geometry is required, we apply
a minimum description length (MDL) principle to evaluate which geometric realizations are most
probable. The central claim is that three spatial dimensions are not necessary, but are optimal for
realizing bounded, persistent observers with well-de�ned interior and exterior regions.

The central claim is that three spatial dimensions are not necessary, but are optimal for encoding
bounded, persistent observers with well-de�ned interior/exterior separation.

2 Setup

Let D denote an execution trace representing a bounded, persistent observer. By an observer we
mean an information-processing system satisfying:

1. Persistence over time,

2. A well-de�ned interior state,

3. A boundary separating internal from external information,

4. Multiple concurrent internal processes (e.g. signaling, energy intake, waste removal).

Let Gd denote a geometric encoding of D in d spatial dimensions, and let L(Gd) denote the minimal
description length required to encode:

� The observer interior,

� The observer boundary ∂Ωd,

� The routing of internal processes within the geometry.

1



We consider the MDL-induced measure:

µ(Gd) ∝ e−L(Gd).

The question is which spatial dimension d minimizes L(Gd).

3 Main Claim

Claim. For execution traces corresponding to bounded, persistent observers,

L(G3) = min
d

L(Gd),

and therefore three-dimensional geometric encodings dominate the MDL-induced measure.

Lower-dimensional encodings exist but incur prohibitively large description length, while higher-
dimensional encodings introduce super�uous geometric degrees of freedom without compensating
reduction in encoding cost.

4 Sketch of Argument

4.1 Boundary and routing costs

In d spatial dimensions, the observer boundary ∂Ωd is (d − 1)-dimensional. For an observer of
characteristic linear size R, the boundary encoding cost scales as:

Lboundary(d) ∼ C1R
d−1.

However, boundary size alone does not determine optimality. A critical additional cost arises from
the routing of multiple independent internal processes within the observer.

Let k denote the number of concurrent internal �ows (e.g. circulation, signaling, energy transport).
Let Cd(k) denote the minimal description length required to embed k disjoint routing channels in
d dimensions without mutual interference.

4.2 One-dimensional encodings

In d = 1, all internal processes are totally ordered. No two independent channels can bypass each
other without intersection. As a result:

C1(k) = ∞ for k > 1.

Thus, one-dimensional encodings cannot support complex observers.
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4.3 Two-dimensional encodings

In d = 2, boundaries are one-dimensional curves, and internal routing is constrained by planar
topology. While disjoint routing is possible in principle, each additional internal channel forces
global coordination to avoid intersections.

As k grows, the description length required to specify non-intersecting routes grows superlinearly:

C2(k) ∼ exp(k),

due to unavoidable crossings, global constraints, and topological fragility. Small perturbations
require large-scale boundary and routing updates, dramatically increasing MDL cost.

Thus, while two-dimensional observers are not impossible, their geometric encodings are overwhelm-
ingly ine�cient.

4.4 Three-dimensional encodings

In d = 3, boundaries are two-dimensional surfaces, and volumetric separation becomes possible.
Independent internal processes can be routed through disjoint tunnels, layers, and cavities with
purely local speci�cation.

As a result:
C3(k) ∼ O(k),

and the total description length is minimized:

L(G3) ≈ Linterior + C1R
2 + C2k.

Three dimensions are the minimal spatial setting in which:

� Stable boundaries exist,

� Independent internal �ows can bypass each other locally,

� Boundary modi�cations remain local rather than global.

4.5 Higher-dimensional encodings

For d > 3, routing complexity does not improve further: Cd(k) ∼ O(k). However, boundary
encoding costs grow rapidly:

Lboundary(d) ∼ R d−1,

and additional geometric degrees of freedom must be explicitly speci�ed, increasing MDL without
providing functional bene�t.

Thus:
L(Gd) > L(G3) for d > 3.
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5 Measure Concentration

Under the MDL-induced measure:
µ(Gd) ∝ e−L(Gd),

even modest di�erences in description length lead to exponential suppression. Since L(G3) is mini-
mal, three-dimensional encodings overwhelmingly dominate the measure.

This explains why observers most likely �nd themselves embedded in three spatial dimensions,
without invoking anthropic selection or special physical laws.

6 Related Work and Novelty

The question of why observers �nd themselves embedded in three spatial dimensions has been
approached from multiple perspectives, but none capture the information-theoretic, MDL-based
argument presented here.

In physics, dimensional constraints have been considered in the context of planetary stability,
inverse-square laws, and the propagation of forces [6, 3, 7]. Such arguments are contingent on
the dynamics of speci�c physical laws and do not generalize to abstract observers or to the infor-
mational structure of existence.

In computational models, one- and two-dimensional cellular automata have been used to investigate
the emergence of localized persistent structures [9, 5, 2]. It is well-known that one-dimensional
automata cannot support multiple disjoint information channels without interference, and that
two-dimensional systems face rapidly growing coordination complexity for multi-channel routing.
Three-dimensional automata allow volumetric separation and more e�cient routing, but prior work
has largely remained con�ned to speci�c CA rules and has not formalized an MDL-based measure
over geometric embeddings.

From the perspective of theoretical computer science, the embedding of graphs and routing of
disjoint channels in low-dimensional spaces has been studied extensively [4, 8, 1]. These results
highlight that 1D and 2D topologies incur high or even unbounded cost for independent �ows, while
3D embeddings permit linear-cost local routing. However, previous work treats these results in
the context of abstract networks or circuits, rather than as a general principle governing observer
existence.

Our contribution extends these insights by framing observers as bounded execution traces with
multiple internal processes and a required inside�outside separation. Geometry is treated not as
an optional representational choice but as a **necessary structural vertex** in a trinity of an-
alytic (wavefunction), discrete (particles), and geometric components, each of which is essential
to the existence and stability of the observer. Using a minimum description length (MDL) mea-
sure over possible geometric embeddings, we show that three spatial dimensions are optimal: they
minimize the total description length required to encode the interior, boundary, and routing of
internal processes. Lower-dimensional embeddings incur exponentially higher description length,
while higher-dimensional embeddings introduce redundant degrees of freedom without reducing
routing complexity. This combination of information-theoretic formalism, MDL measure, and the
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trinary observer structure is, to our knowledge, not present in prior literature and establishes a new
explanatory framework for the emergence of three-dimensional space for observers.

7 Conclusion

Three spatial dimensions are not required for observers to exist, but they are optimal for encoding
bounded, persistent observers with well-de�ned interior boundaries and multiple concurrent internal
processes.

Under an MDL-based measure over geometric encodings, three-dimensional space emerges as the
overwhelmingly probable setting for observers.
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