Supplementary Material:
The QBitwave Framework

TaMe¢

2024

1 Purpose and Scope

This document provides a precise reference specification for the Python class QBitwave, used in
the associated manuscripts. It formalizes the mapping from discrete bitstrings to emergent com-
plex amplitudes and describes derived quantities such as Shannon entropy, compressibility, and
coherence.

2 Preliminaries

Let:

e b= (b1,...,byn) € {0,1}" denote a bitstring of length N.
e B ={0,1}" denote the set of all bitstrings of length N.

e nplock denote the block size for bit-to-amplitude conversion (even integer).

C denote the complex numbers.

|| - [|]2 denote the Euclidean norm.

3 Forward Mapping: Wavefunction to Bitstring

Given normalized complex amplitudes ¢ = (¢1,...,¢) € CM and associated phases ¢ = (¢1, ..., dar):

gy =ret®, =l =1 M, (1)
bgmp = binary _encode(r;, kamp), (2)
b{)hase = binary _encode (27]r’ Ephase | » (3)

where kamp, kphase are user-selected bits per amplitude/phase. The flattened bitstring is

b= @(bgmp ” b{)hase)7

M
j=1

with || denoting concatenation.

4 Reverse Mapping: Bitstring to Wavefunction

Partition the input bitstring b into consecutive blocks of size npock:

b= (b1,...,bN), Nplock | IV,

Nblocks = IN/Mblock-

Each block is split into two halves (real and imaginary parts):

Re (1) = bits_to_signed_float (b;_1)

Im(1p;) = bits_to_signed_float (bjnblock/2+1:jnb1ock) ,

nblock+1!jnblock/2))

and then normalized:

Y
S

(G

Bitstring (b, by, ---, by)
|
| |

[Block1 |0[1]0[1][1]0][0]0] Blockn |

VoG

Real Part Imaginary Part Real Part

olt]t]o] | | [1/tlofo] || [10]o]o]
Re (¢/)— -0.625 Re(y,) — 0.0
Im(y)— 0.75 l Im(y,) — 0.87

Normalized Complex Amplitudes:

i = -0.625 + 0.75i
Wy, = 0.0 + 0.87i

Figure 1: The structure of QBitwave

5 Derived Quantities

5.1 Amplitude Probabilities
M
pi=Iw% D pi=1
j=1
5.2 Shannon Entropy of Wavefunction

M
Sy == pjlogyp;.
7=1

5.3 Bitstring Entropy (Syntactic Entropy)

Let pg, p1 be the fractions of zeros and ones in b:

Hy = —pology po — p1logs p1.

5.4 Coherence

The Kullback-Leibler divergence between bit-level and amplitude-level distributions:
Py(i)
Py (i)’

Dkr(Py || Py) = Py(i)log,
i=0,1

where P is truncated/aligned to the same length as P.

5.5 Compressibility

Define the Fourier transform of amplitudes:

¥ =FFT(y),
and let Nz be the number of Fourier coefficients with magnitude above threshold 7. Then

N, sig

—1—
c 7

C e 10,1].

6 Randomization / Mutation Operations

Small perturbations of the amplitudes 1 — v + 71, with n ~ CN(0,0?) (complex Gaussian), are
normalized to unit norm. Random bit flips on b trigger automatic recomputation of .

7 API Summary (Illustrative)

from gbitwave import QBitwave

bw = QBitwave(bitstring)

amps = bw.get amplitudes ()
entropy = bw.entropy ()

bit _entropy = bw.bit entropy ()
coherence = bw.coherence ()
compress = bw.compressibility ()
bw.mutate(level =0.01)

bw. flip (n_flips=5)

8 Relation to Theory in Main Text

The following properties are essential to the analytical results:

e Normalization of amplitudes
e Mapping from bitstring to complex amplitudes

e Computation of Shannon entropy and compressibility

All other methods (e.g., random flips, mutation) are ancillary and used only in simulation studies.

	Purpose and Scope
	Preliminaries
	Forward Mapping: Wavefunction to Bitstring
	Reverse Mapping: Bitstring to Wavefunction
	Derived Quantities
	Amplitude Probabilities
	Shannon Entropy of Wavefunction
	Bitstring Entropy (Syntactic Entropy)
	Coherence
	Compressibility

	Randomization / Mutation Operations
	API Summary (Illustrative)
	Relation to Theory in Main Text

