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Abstract

Building on the identi�cation of zero-entropy singularities (Paper II) and the observation
that structures emerge from increasing entropy (Paper III), this paper explores the connection
between emergent microstructure density in an information-theoretic view and matter-energy in
General Relativity. We implement a probabilistic mapping from information-theoretic bit�ips
to semiclassical stress-energy, providing a framework in which stochastic matter �elds determine
the spacetime metric in expectation through Einstein's equations.

1 Introduction

The standard Schwarzschild solution predicts in�nite curvature at the singularity. To reconcile these

views, we replace the interior solution with a lognormal-shaped distribution of e�ective curvature,

anchored at zero entropy.

In the semi-classical gravity framework, the Einstein �eld equations are

Gµν = 8πG ⟨T̂µν⟩,

where ⟨T̂µν⟩ is the expectation value of the stress-energy tensor in a given quantum state.

If the singularity corresponds to a zero-entropy state � i.e., no distinguishable microstates, no

matter, and no structures � then

⟨T̂µν⟩ = 0,

and the Einstein equations reduce to the vacuum form,

Gµν = 0,

describing a well-de�ned geometry.

2 Discussion

Fitting of lognormal to singularity and event horizon is arbitrary in form, but it has the virtue

of dissolving the singularity, preserving information, and yielding well-behaved particle trajectories

inside the horizon.
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Figure 1: Schwarzschild metric as a probabilistic particle distribution: probability density vanishes

at the singularity.

The lognormal distribution suggests that the probability of particles existing rises sharply just

outside this zero-entropy state. This means there is a massive concentration of information in the

region immediately surrounding the singularity. This could be a testable prediction for a future

theory of quantum gravity.

Unlike black holes, where the interior is hidden behind an event horizon, the primordial singularity of

our universe is observable indirectly. The early universe leaves its imprint on the cosmic microwave

background (CMB) and large-scale structure. From an information-theoretic perspective:

� The Big Bang corresponds to a zero-entropy state, where no emergent particles or structures

exist.

� As entropy increases, geometric structure unfolds, producing particles whose abundances fol-

low a lognormal distribution.

� The probability distribution of curvature or matter density peaks at intermediate scales, re-

�ecting the mode of the lognormal distribution.

� These statistical peaks could, in principle, leave observable signatures in the CMB, encoding

information about the early universe's geometry.

Thus, while black hole interiors remain inaccessible, the cosmological singularity provides a natural

laboratory for testing predictions of the information-theoretic framework.

3 Conclusion

Even with a perfectly �tted metric derived from emergent microstructure densities, the overall

spacetime geometry remains e�ectively indistinguishable from the classical GR solution at all radii

outside an extremely small neighborhood near the singularity. The singularity itself is a zero-entropy

�xed point, corresponding to a smooth, information-free vacuum. Any modi�cations to the metric

near the center are secondary re�nements and do not alter the essential causal or geometric structure

predicted by General Relativity.
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4 Einstein Equations as Probability Laws:

A Semiclassical Information-Theoretic Approach

4.1 Motivation

� Geometric Entropy: The discovery that while total physical entropy increases, the geo-

metric space of a collapsing black hole can be understood as a geometric interpretation of

information with decreasing entropy. Conversely, the Big Bang represents increasing entropy.

� Emergent Laws: Wavefunctions and General Relativity are emergent features arising from

information serving as optimal compression algorithms.

4.2 Core Concept: From Einstein to Probability

Let worldlines be random paths γ on a manifold M . We de�ne a probability distribution on paths

centered on General Relativity (GR):

P[γ] ∝ exp

(
−1

2

∫
γ

∥aγ(τ)− aGR(τ)∥2

σ2(I(x(τ)))
dτ

)
where aγ is the stochastic 4-acceleration, aGR is the GR geodesic acceleration, and σ(I) is a scale-

dependent noise amplitude depending on a curvature invariant I (e.g., the Kretschmann scalar

K = RabcdR
abcd).

4.3 Multiplicative (Lognormal) Kinematics

For any coordinate that shrinks under attraction (such as the radial coordinate r in Schwarzschild

geometry), we evolve the system multiplicatively in proper time:

ln r(τ +∆τ) = ln r(τ) + µ(r)∆τ + σ(I(r))
√
∆τ ξ

with ξ ∼ N (0, 1). Consequently, increments of ln r are Gaussian, making the radial steps lognormal.

The drift µ(r) is calibrated so that the most probable trajectory recovers the GR geodesic.

4.4 Noise Suppression: The Entropy�Singularity Lemma

Vanishing entropy corresponds to a collapsing geometry, i.e., a geometric singularity.

If entropy counts accessible microstates, then at the singularity there are none left (S → 0). There-
fore, the probability of particle emission or �uctuation at the singularity must vanish.

**Entropy as a Function of Curvature**

Let I be a curvature invariant. We de�ne a coarse-grained entropy S(I) such that:

S(I) ≥ 0, S(I) −−−→
I→0

S0 > 0, S(I) −−−→
I→∞

0
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We model this using exponential decay:

S(I) = S0 exp[−(I/IP )
m] , m > 0

where IP ∼ ℓ−4
P sets the Planck curvature scale.

**Noise Amplitude and Probability Voids**

We set the noise variance proportional to entropy: σ2(I) = κS(I).

� Far from the singularity (I ≪ IP ): σ
2(I) ≈ σ2

0. GR with �nite �uctuations is recovered.

� Near the singularity (I ≫ IP ): σ
2(I) → 0. Fluctuations are quenched.

The singularity becomes a probability void. There is no stochastic �ux into the singular region

because there are no available microstates to support existence.

4.5 Stress-Energy as a Bit�ip Field

We tie matter to information via a Poisson�lognormal �eld of bit�ips per 4-volume:

N(x) | Λ(x) ∼ Poisson(Λ(x))

lnΛ(x) ∼ N
(
µΛ(x), s

2
Λ(x)

)
Mapping �ips to local stress-energy Tab[N ], we take Einstein-in-expectation:

Gab(x) = 8πGE[Tab[N ]] + (�nite �uctuation terms)

4.6 Einstein to Probability Dictionary

Deterministic GR: Gab = 8πGTab

Probabilistic GR: P[γ] ∝ exp
(
−1

2

∫ ∥aγ−aGR∥2
σ2(I) dτ

)
Matter Field: N | Λ ∼ Poisson(Λ), ln Λ ∼ N (µΛ, s

2
Λ)

Expectation: Gab = 8πGE[Tab[N ]] + �nite cumulants

Kinematics: ∆ ln r = µ(r)∆ + σ(I)
√
∆ ξ

Simulation Code

� schwarzschild_lognormal.py: Probabilistic Schwarzschild blackhole
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