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Abstract

Building on the identification of zero-entropy singularities (Paper II) and the observation
that structures emerge from increasing entropy (Paper III), this paper explores the connection
between emergent microstructure density in an information-theoretic view and matter-energy in
General Relativity. We implement a probabilistic mapping from information-theoretic bitflips
to semiclassical stress-energy, providing a framework in which stochastic matter fields determine
the spacetime metric in expectation through Einstein’s equations.

1 Introduction

The standard Schwarzschild solution predicts infinite curvature at the singularity. To reconcile these
views, we replace the interior solution with a lognormal-shaped distribution of effective curvature,
anchored at zero entropy.

In the semi-classical gravity framework, the Einstein field equations are

G = 871G (T},

where (71),,) is the expectation value of the stress-energy tensor in a given quantum state.

If the singularity corresponds to a zero-entropy state — i.e., no distinguishable microstates, no
matter, and no structures — then

<TMV> =0,
and the Einstein equations reduce to the vacuum form,
Guw =0,

describing a well-defined geometry.

2 Discussion

Fitting of lognormal to singularity and event horizon is arbitrary in form, but it has the virtue
of dissolving the singularity, preserving information, and yielding well-behaved particle trajectories
inside the horizon.
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Figure 1: Schwarzschild metric as a probabilistic particle distribution: probability density vanishes
at the singularity.

The lognormal distribution suggests that the probability of particles existing rises sharply just
outside this zero-entropy state. This means there is a massive concentration of information in the
region immediately surrounding the singularity. This could be a testable prediction for a future
theory of quantum gravity.

Unlike black holes, where the interior is hidden behind an event horizon, the primordial singularity of
our universe is observable indirectly. The early universe leaves its imprint on the cosmic microwave
background (CMB) and large-scale structure. From an information-theoretic perspective:

e The Big Bang corresponds to a zero-entropy state, where no emergent particles or structures
exist.

e As entropy increases, geometric structure unfolds, producing particles whose abundances fol-
low a lognormal distribution.

e The probability distribution of curvature or matter density peaks at intermediate scales, re-
flecting the mode of the lognormal distribution.

e These statistical peaks could, in principle, leave observable signatures in the CMB, encoding
information about the early universe’s geometry.

Thus, while black hole interiors remain inaccessible, the cosmological singularity provides a natural
laboratory for testing predictions of the information-theoretic framework.

3 Conclusion

Even with a perfectly fitted metric derived from emergent microstructure densities, the overall
spacetime geometry remains effectively indistinguishable from the classical GR solution at all radii
outside an extremely small neighborhood near the singularity. The singularity itself is a zero-entropy
fixed point, corresponding to a smooth, information-free vacuum. Any modifications to the metric
near the center are secondary refinements and do not alter the essential causal or geometric structure
predicted by General Relativity.



4 Einstein Equations as Probability Laws:
A Semiclassical Information-Theoretic Approach

4.1 Motivation

e Geometric Entropy: The discovery that while total physical entropy increases, the geo-
metric space of a collapsing black hole can be understood as a geometric interpretation of
information with decreasing entropy. Conversely, the Big Bang represents increasing entropy.

e Emergent Laws: Wavefunctions and General Relativity are emergent features arising from
information serving as optimal compression algorithms.

4.2 Core Concept: From Einstein to Probability

Let worldlines be random paths v on a manifold M. We define a probability distribution on paths
centered on General Relativity (GR):

P[] o exp(_1L lay(1) — agr(D)|? dr)

2 o?(Z(z(r)))

where a, is the stochastic 4-acceleration, agr is the GR geodesic acceleration, and o(Z) is a scale-

dependent noise amplitude depending on a curvature invariant Z (e.g., the Kretschmann scalar
K = RadeRabcd).

4.3 Multiplicative (Lognormal) Kinematics

For any coordinate that shrinks under attraction (such as the radial coordinate 7 in Schwarzschild
geometry), we evolve the system multiplicatively in proper time:

Inr(r + A7) = In7r (1) + p(r) At + o (Z(r)) VAT E

with & ~ N (0,1). Consequently, increments of In r are Gaussian, making the radial steps lognormal.
The drift pu(r) is calibrated so that the most probable trajectory recovers the GR geodesic.

4.4 Noise Suppression: The Entropy—Singularity Lemma

Vanishing entropy corresponds to a collapsing geometry, i.e., a geometric singularity.

If entropy counts accessible microstates, then at the singularity there are none left (S — 0). There-
fore, the probability of particle emission or fluctuation at the singularity must vanish.

**Entropy as a Function of Curvature**

Let I be a curvature invariant. We define a coarse-grained entropy S(/) such that:

S() 20, S(I)—8>0, S(I)—0
%

I—o0



We model this using exponential decay:

S(I) = Spexp[—(I/Ip)™], m>0
where Ip ~ 6134 sets the Planck curvature scale.
**Noise Amplitude and Probability Voids**

We set the noise variance proportional to entropy: o?(I) = x S(I).

e Far from the singularity (I < Ip): 0?(I) ~ 03. GR with finite fluctuations is recovered.

e Near the singularity (I > Ip): 0?(I) — 0. Fluctuations are quenched.

The singularity becomes a probability void. There is no stochastic flux into the singular region
because there are no available microstates to support existence.

4.5 Stress-Energy as a Bitflip Field

We tie matter to information via a Poisson—lognormal field of bitflips per 4-volume:

N(z) | A(x) ~ Poisson(A(x))
InA(x) ~ M(pa(2), si(2))

Mapping flips to local stress-energy Ty,[N], we take Einstein-in-expectation:

Gap(z) = 8nGE[T,[N]] + (finite fluctuation terms)

4.6 Einstein to Probability Dictionary

Deterministic GR: Gaop = 8nG Ty,

Probabilistic GR: Ply] o exp< } [ leaeanl® dT)
Matter Field: N | A ~ Poisson(A), lnA ~ N (pa, s3)
Expectation: Gap = 81G E[T,4[N]] + finite cumulants
Kinematics: Alnr = pu(r)A +o(I)VAE

Simulation Code

e [schwarzschild lognormal.py: Probabilistic Schwarzschild blackhole


simulations/schwarzschild_lognormal.py
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