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Abstract

Building on the ontological equivalence of physical and informational configurations estab-
lished in Paper I, we investigate black hole singularities from an information-theoretic perspec-
tive, viewing geometric spacetime and the execution trace of a computational simulation as two
equivalent interpretations of an underlying informational structure.

Whereas standard General Relativity (GR) cannot be evolved to the point of singularity
formation due to numerical divergences and the breakdown of the manifold description, the
simulation’s execution trace provides complementary view over the process. This allows us to
extrapolate the spacetime description to the actual singularity to the singularity itself. We
propose that the “singularity” is not a point of infinite curvature, but rather a state of infor-
mational exhaustion, in which the absence of internal variety prevents the emergence of the
microstructures we interpret as matter and energy.

1 Introduction
The guiding hypothesis is that spacetime geometry and the execution of a simulation can be viewed
as complementary descriptions of the same underlying informational structure.

Our central question is whether approaching singularities as information-theoretic phenomena pro-
vides new insights into their structure and physical interpretation. To explore this, we develop both
analytic reasoning and numerical simulations of collapsing dust clouds.

2 Methods

We model black hole evolution through computational simulation. We compute the ezecution-trace
entropy of the discretized particle positions, which captures the number of distinguishable geometric
configurations encoded in memory.

2.1 Execution Trace

Let M denote the set of all memory locations in a deterministic computing system. A machine
state S € M is a complete assignment of values to all memory elements. Let P = (I, Is, ..., I,) be



a finite sequence of deterministic instructions, with I, : S — S. The ezecution trace T of program
‘P is the ordered sequence of states

T =(50,515--,5n), Sk+1 = Lpt+1(5k)-

The execution trace encodes all information about the simulated phenomenon. In practice, we focus
on the bitstring sub-trace that encodes spatial geometry.

2.2 Mapping Geometry to Bitstrings

Let a geometric state be encoded as a bitstring b € {0, 1}, representing the discretized positions
of all particles in the dust cloud. Let
C ={0,1}*

be the space of 3D configurations. Define
f:O=2  fb)=(6(br), d(b2), d(b3)),

where ¢ : {0,1}* — Z decodes fixed-length binary segments. Quantization ensures that the encoding
reflects true positional differences, minimizing spurious entropy from floating-point representations.

2.3 Execution-Trace Entropy

To quantify distinguishable configurations, we compute the Shannon entropy of the bitstring repre-
sentation:

H(b) = —pology po — p1logy p1,

where pg and p; are the empirical frequencies of 0- and 1-bits in b.

Over a sequence of states (the bitstring sub-trace), the entropy trajectory reflects the collapse of
distinguishable geometric states as particles fall toward the singularity.

3 Simulations

We simulated both Schwarzschild (non-rotating) and Kerr (rotating) black holes. All simulations
show a monotonic decrease in execution-trace entropy as particles fall inward. Extrapolation indi-
cates that the singularity corresponds to zero entropy state.

3.1 Lemma: Vanishing Execution-Trace Entropy Implies Geometric Singularity

Let B; C {0,1}* denote the set of bitstrings encoding geometry over a finite time window near ¢. If

H(Bt) — 0,



Schwarzschild EF (a=0.0) — Trajectories Schwarzschild EF (a=0.0) — Entropy over time

0.84

0.7

0.6

Entropy (bits)

0.5+

0.4

T T T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 15 10.0 12.5 15.0 17.5 20.0

Figure 1: Execution-trace entropy of particles falling into a Schwarzschild black hole.
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Figure 2: Execution-trace entropy of particles falling into a Kerr black hole.

then the set of distinguishable geometric configurations collapses to a single equivalence class under
f- That is, the geometry degenerates to a unique configuration.

4 Discussion

Our results show a clear divergence between geometric and informational descriptions of gravita-
tional collapse. While the geometric formulation of General Relativity becomes singular and ill-
defined, the informational description remains well-behaved: the execution-trace entropy decreases
monotonically and converges to zero.

This convergence implies that, near the classical singularity, the set of distinguishable geometric
configurations collapses to a single informational state. In this limit, all microstate diversity vanishes

(W = 1), and the Shannon entropy is exactly zero. Any faithful geometric decoding of such
information yields the same object: a single point.



From this perspective, the singularity is not a region of infinite curvature, but a state of informational
exhaustion. The apparent breakdown of spacetime reflects not a physical inconsistency, but the
absence of internal informational structure required to support distinguishable geometry, matter,
or temporal evolution.

5 Conclusion

In General Relativity, singularities signal the breakdown of the spacetime manifold. In the information-
theoretic view developed here, they instead correspond to perfectly well-defined zero-entropy states.
The singularity is therefore not a pathological object, but the simplest possible one: a unique
informational configuration whose geometric manifestation is a point.

5.1 Bitstring Encoding Procedure

To encode geometry:

1. Quantize continuous coordinates: R — Z
2. Convert integers to fixed-width binary strings

3. Concatenate binary segments into a full state bitstring

Entropy is then computed as above. The collapse of this entropy directly reflects the loss of distin-
guishable structure.

Simulation Code

e schwarzschild.py: Schwarzschild black hole simulation
e kerr.py: Kerr black hole simulation

e blackhole.py: Common base classes


simulations/schwarzschild.py
simulations/kerr.py
simulations/blackhole.py
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